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† Faculté Saint-Jean, University of Alberta, 8406–91 Street, Edmonton, Alberta, Canada T6C 4G9
‡ Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
§ TRIUMF, 4004, Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
‖ Instituto de Fı́sica, Universidade Federal da Bahia, Campus de Ondina, 40210-340, Salvador
Ba, Brazil
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Abstract. We use a five-dimensional approach to Galilean covariance to investigate the
non-relativistic Duffin–Kemmer–Petiau first-order wave equations for spinless particles. The
corresponding representation is generated by five 6 × 6 matrices. We consider the harmonic
oscillator as an example.

The purpose of this letter is to apply Galilei covariance in a five-dimensional approach to
construct Duffin–Kemmer–Petiau (DKP) first-order wave equations. After illustrating our
formalism by first recovering the Schrödinger equation, we then determine the non-relativistic
version of the DKP equation for spinless particles. We consider the free particle and, as a
non-trivial example, we briefly discuss the simple harmonic oscillator.

The formulation of Galilei transformations adopted in this letter involves an embedding
in a five-dimensional de Sitter space G and is such that one obtains a covariant form for
non-relativistic physics. It was introduced about ten years ago in [1], followed shortly by a
beautiful paper [2] where the idea of adding an extra degree of freedom to the Lagrangian
was borrowed from [3]. Further developments and applications are given in [4, 5]. A similar
geometrical approach can be found in [6]. An advantage of all this formalism is that Galilean
covariance is manifest throughout and quite similar to the relativistic formulation. Also, the
problems are often more elegant and simplified, particularly because one considers the vector
representations of the Galilei group rather than projective representations. A simple but elegant
argument for the extended space–time is that the free Lagrangian

L = 1
2mẋ2 (1)

although not invariant under Galilei transformations

x→ x′ = Rx− vt + a

t → t ′ = t + b
(2)

becomes invariant if we extend it as

L→ L−mṡ (3)
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given that s transforms as

s → s − (Rx) · v + 1
2v2t + const. (4)

The covariant approach to these Galilei transformations consists of embedding the usual three-
dimensional space E (wherein time t appears as an external parameter) in a five-dimensional
de Sitter space G with coordinates (x, y, z, t, s) (in [4] the fifth coordinate s is identified with
x2

2t ). As shown in [1], the transformations (2) and (4) leave invariant the scalar product, with
metric

gµν =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0


 . (5)

Throughout this letter, the Greek indices, µ, ν, . . . , run from 1 to 5 whereas the Latin indices,
j, k, . . . , run only from 1 to 3. Also, we denote the inner product corresponding to (5) by

(x|y) = gµνx
µyν

=
n=3∑
i=1

xiyi − x4y5 − x5y4. (6)

It is shown in [4] how the extended Galilei algebra is obtained as a subalgebra of the Lie algebra
associated with the set of linear transformations in G of type

xµ = Gµ
ν x

ν + aµ (7)

that leave (dx|dy) invariant, and such that |G| = 1 with Gµ
ν = δµν + εµν . This group admits 15

generators of transformations, and the central extension can be seen as the translation generator
in the fifth dimension, that is, the mass is a relic of the additional dimension!

From the geometrical point of view, the most natural embedding of E in G is given by [4]

A �→ A =
(

A, A4,
A2

2A4

)
with A = (A1, A2, A3) ∈ E A ∈ G. (8)

The purpose of this letter is to apply this formalism to construct non-relativistic wave
equations following the existing DKP approach, valid for relativistic wave equations for
arbitrary spins [7, 8]. Hereafter we restrict our study to the spin-zero particles; we plan
to investigate higher-spin representations in another paper. In ordinary (3 + 1)-dimensional
space–time, the DKP equations are a particular case of equations of the form (see the beautiful
review by Krajcik and Nieto [7] and the references therein)

(iαµp
µ + k)ψ = 0 (9)

where the αµ are given by representations of so(5):

αµ ≡ Jµ5, Jµν = −i[αµ, αν], J55 = 0. (10)

Similarly, in d + 1 dimensions, one works with representations of the Lie algebra so(d + 2).
In particular, this algebra is so(4) (isomorphic to su(2)⊕ su(2), which is not simple) in 2 + 1
dimensions, and so(3) in 1+1 dimensions. Therefore, in 4+1 dimensions, we will construct the
DKP algebra from representations of so(6) (a more complete investigation will be published
separately). Just like in 3+1 dimensions, the five- and ten-dimensional representations of so(5)
provide the DKP equations for spinless and spin-one particles, respectively, in 4+1 dimensions,
the spin-zero particles are described by the fundamental representation of dimension six.
Hereafter our construction is therefore based on this representation.
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Before considering the DKP equation let us illustrate the Galilei covariant formalism to
derive the Schrödinger equation. Using the first Casimir invariant P 2 of the ‘inhomogeneous
Poincaré’ algebra associated with (7), one can write

∂µ∂
µ# = k2# ∂5# = −im# (11)

where k2 is a positive constant, #(x) is a vector in the Hilbert space with #(x) = 〈x|#〉,
and m is a parameter defining the value of the invariant P5 in the representation, according to
Schur’s lemmas. Using the Galilean embedding (8), the first of equations (11) is

(∇2 − 2∂4∂5)# = 0 (12)

where x4 = t . Using the second of equations (11), we have

i∂t# = − 1

2m
∇2#. (13)

This is the Schrödinger equation for a free particule of mass m.
Now let us at last turn our attention to the DKP equation, given by

(βµ∂µ + k)ψ = 0 (14)

where k is an arbitrary constant that reflects the fact that the total energy is defined up to a
constant, as we shall see later. The five matrices β satisfy the DKP algebra

βµβνβλ + βλβνβµ = gµνβλ + gλνβµ (15)

where gµν is now the Galilean metric (5). (In the literature, where the purpose is usually to
construct relativistic wave equations, gµν is just the four-dimensional Lorentz metric.) The
dimension of the matrices β depend on the spin. Here, we construct non-relativistic wave
equations for spinless particles, using the metric space associated with (5). Therefore we need
five matrices, each of dimension six. We shall work with the following representation:

β1 =




0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0




β2 =




0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0




β3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0




β4 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 −1 0




β5 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0



.

(16)

They satisfy the DKP algebra (15) with gµν given by (5).
The DKP equation (14) is obtained from the Lagrangian

LDKP = ψ( 1
2β

µ(
−→
∂ µ −←−∂ µ) + k)ψ

= 1
2ψβ

µ∂µψ − 1
2 (∂µψ)β

µψ + kψψ. (17)
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The adjoint of ψ is given by ψ ≡ ψ†η, where

η = (β4 + β5)2 + 1. (18)

One can show that

βiη = −ηβi

β4η = ηβ5

β5η = ηβ4.

(19)

The Euler–Lagrange equations for the adjoint spinor ψ give the DKP equation (14), whereas
the corresponding equations for the spinor ψ provide the adjoint equation

ψ(βµ←−∂ µ − k) = 0. (20)

There exists a conserved five-current

jµ = ψβµψ. (21)

Indeed

∂µj
µ = (∂µψβ

µ)ψ + ψ(βµ∂µψ)

= (kψ)ψ + ψ(−kψ)
= 0 (22)

where (14) and (20) have been used. Also, developing the sum,

∂µj
µ = ∂k(ψβ

kψ) + ∂t (ψβ
4ψ) + ∂5(ψβ

5ψ) = 0 (23)

one can make the identifications: jk ≡ (ψβkψ), ρ ≡ (ψβ4ψ) and j 5 ≡ (ψβ5ψ) = 0.
The simplest example, the free particle, is considered as follows. First, let us rewrite (14)

in a form involving the five-momentum:

(βµpµ + k)ψ = 0 (24)

wherepµ = (p,m,E) andpµ = (p,−E,−m). Also, pµ = −ih̄∂µ = (−ih̄∇,−ih̄∂t ,−ih̄∂5),
and the factor−ih̄ is absorbed in the k of equation (24). Written more explicitly, (24) becomes

(β · p− β4E −mβ5 + k)ψ = 0
(β · p−mβ5 + k)ψ = ih̄β4∂tψ

(25)

working with the stationary states, for which Eψ = ih̄∂tψ .
The matrices (16) describe particles with spin-zero, represented by the ‘DKP spinor’:

ψ =




Ax

Ay

Az

θ

ϕ

φ



. (26)

In matrix form (25) is, using (16) and (26),


k 0 0 0 0 px
0 k 0 0 0 py
0 0 k 0 0 pz
0 0 0 k 0 0
0 0 0 0 k −m
px py pz m 0 k







Ax

Ay

Az

θ

ϕ

φ



=




0
0
0
Eφ

0
−Eϕ




(27)

for the stationary states.
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Solving (27) for φ, and absorbing the constant k into the energy by the redefinition

E→ E +
k2

2m
(28)

one obtains the Schrödinger equation

Eφ = p2

2m
φ. (29)

Also, one obtains from (27) that, once the solution φ is known, the spinor (26) reduces to

ψfree =



−p/k

E/k

m/k

1


φ. (30)

As another example, let us consider the ‘DKP harmonic oscillator’, where, essentially,
one performs the substitution [9]

p→ p− imωηr (31)

into equation (25), which then becomes

[β · (p− imωηr)−mβ5 + k]ψ = ih̄β4∂tψ. (32)

Using again the ‘DKP spinor’ (26), the DKP equation can be written, for the stationary
states, as

kA + (p + imωr)φ = 0

kθ = Eφ

kϕ = mφ

(p− imωr) · A + mθ + kφ = −Eϕ.

(33)

Again, by reducing (33) in terms of φ only, one obtains

−(p− imωr) · (p + imωr)φ + 2mEφ + k2φ = 0. (34)

This can be further reduced (using definition (28), and not forgetting that p and r satisfy the
canonical commutation relations!) to

Eφ =
(

p2

2m
+

1

2
mω2r2 +

3

2
h̄ω

)
φ (35)

which describes the usual simple harmonic oscillator.
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